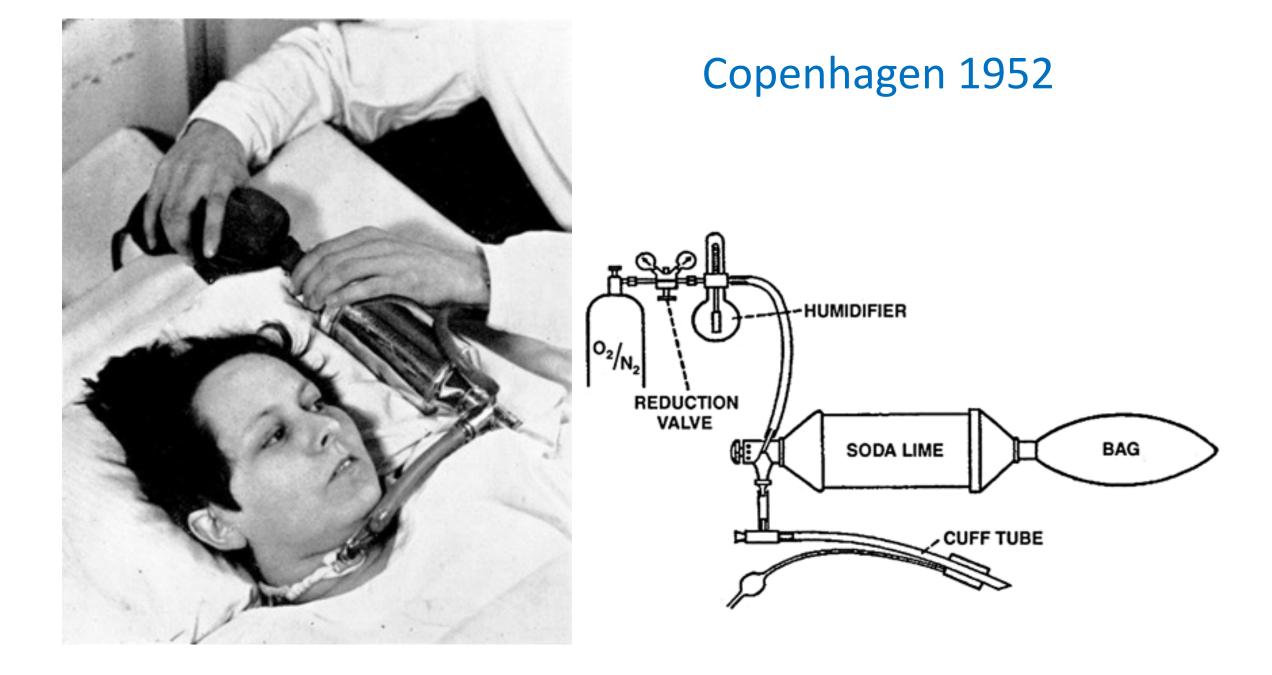

Stewart or Astrup?

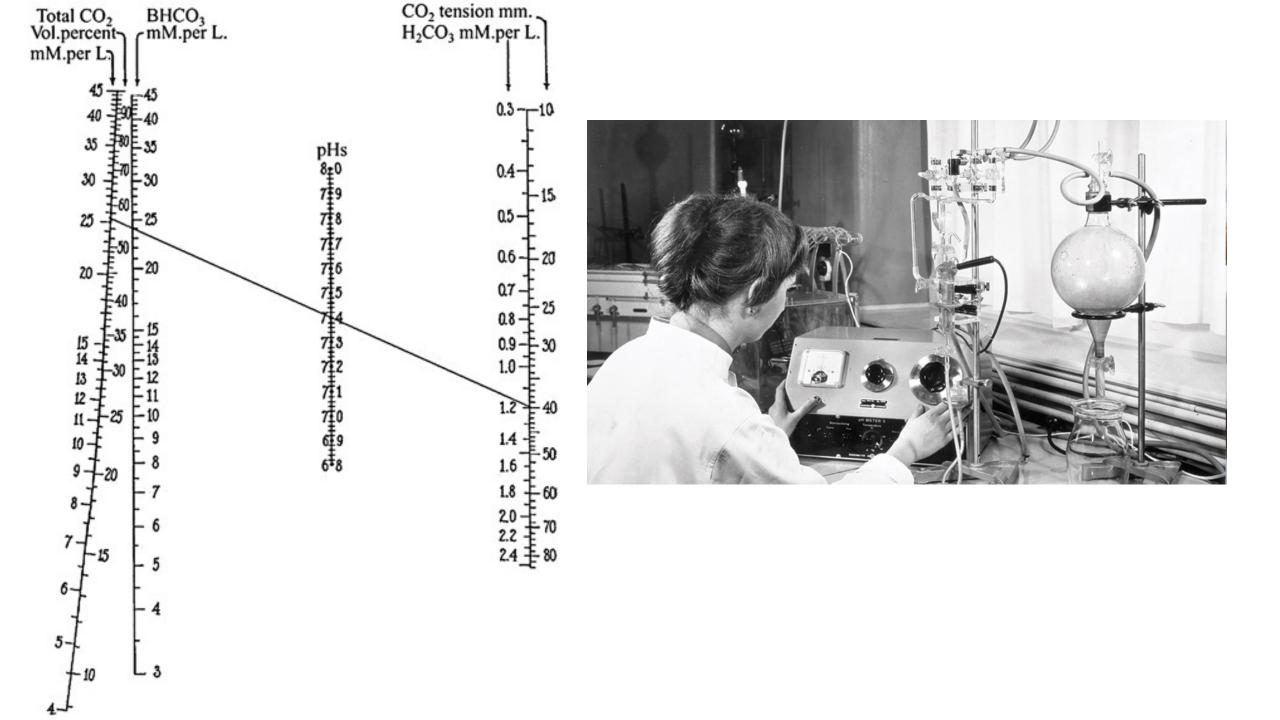
František Duška

Conflict of interests

- Director of Summer School of Clinical Acid Base, sponsored by 4-EU Alliance Programme and Radiometer, Itd., Copenhagen, Denmark
- Co-editor (with P. Elbers, J. Kellum) of Stewart's Acid Base, 3rd ed.
- No other COI

Paul Elbers John Kellum František Duška Fully Revised Third Edition


Stewart's Textbook of Acid-Base



Temperatore serves		200	
$pH(T)_c$	7.432		[7.350 - 7.450
$pCO_2(T)_C$	4.81	kPa	[4.67 - 6.40
$\uparrow pO_2(T)_C$	26.9	kPa	[11.1 - 14.4
Acid-base status			
cHCO ₃ -(P,st)c	24.3	mmol/L	Alb 22 ~/I
cHCO3-(P)c	240	mmol/L	Alb 22 g/L
cBase(Ecf)c	(-0.3)	mmol/L	
Oximetry values	0.0	minove	· · · · · · · · · · · · · · · · · · ·
sO2	99.9	%	
↓ ctHb	120		[135 - 175
		g/L	[155 - 175
Hctc	36.6	%	
† FO ₂ Hb	98.6	%	[94.0 - 98.0
FCOHb	0.8	%	[0.5 - 1.5
FHHb	0.1	%	[-
FMetHb	0.5	%	[0.0 - 1.5
Electrolyte values			
t cK*	4.6	mmol/L	[3.4 - 4.5
↓ cNa ⁺	132	mmol/L	[136 - 146
↓ cCa²*	0.61	mmol/L	[1.15 - 1.29
↓ cCl ⁻	70	mmol/L	[98 - 106]
Anion Gapc	37.1	mmol/L	
Metabolite values			
t cGlu	8.0	mmol/L	[3.9 - 5.8]
t cLac	20	mmol/L	[0.5 - 1.6]
Oxygen status	-		
₽50 ₀	3.40	kPa	

34-years-old, alcoholism, self-neglect, Now presents with after 3 days off legs. Vomiting, confused.

First blood gas in emergency room

Classical approach to acid base

 Assessment of bicarbonate buffer based on Henderson-Hasselbalch equation

pH = 6.1 + log
$$\frac{[HCO_3^-]}{\alpha^* pCO_2}$$
Metabolic disorders
 \downarrow = acidosis
 \downarrow = alkalosis
 \uparrow = alkalosis
 \uparrow = acidosis
 \uparrow = acidosis

other primary disorder (to the same direction, hence pH closer to normal)

Challenges of bicarbonate-based approach

- Bicarbonate changes with pCO₂
- Bicarbonate does not reflect severity of acidosis due to varying noncarbonic buffers
- Mixed disorders
 - Respiratory with metabolic
 - Within one system

pCO₂ affects HCO₃⁻

	7.054		L	
↓ pH	7,361		7.158	
pCO2	5,73	kPa	9,65	kPa
† pO2	17,8	kPa	25.5	*Pa
Hodnoty aximetrie				
ctHb	136	g/L	133	pl.
† sO2	99,4	%	99.3	%
† FO2Hb	98.0	%	97.9	*
FMetHb	0,4	%	0.7	%
FCOHb	1.0	%	0.7	*
Hodnoty elektrolytů				
cK+	4.1	mmol/L	4.4	mmoi/L
cNa+	145	mmol/L	146	mmoil.
cCs2+	1.04	mmo//L	1.08	mmoil
t cCl-	114	mmol/L	114	moil
Hodnoty metabolitů				
t cGlu	5,7	mmol/L	57	mmoi/L
? cLac	1.3	mmol/L	1.1	mmoi/L
Hodnoty korigované n			i teplatu	CONTRACT.
pH(T)	7,351			
pCO2(T)	5,73	kPa	7,158	~
pO2(T)	17.8	kPa	9.65	KP8
Statusy kyslíku	17,0		25.5	KP8
	48.0	Vol%		1.1.1
ctO2,c	18,9	kPa	18.7	Volte
p50.e	3,71	KP'd	4,62	KP8
Acidobasický status				
cBase(B).c	-1.9	mmol/L	-4.5	mmol/L
cBase(Ecf).c	-1,8	mmol/L	-3,0	mmoi/L
cHCO3-(Pist) c	22.8			and a later
cHCO3-(P).c	23.8	mmol/L	25.7	mmoil
Antonoap, Inc. o	10,0		10,3	TITICAL.
ctCO2(B).c	21,5	mmol/L	24.4	mmail
ctCO2(P),c	25,1	mmoVL	27.9	mmoi/L
ctO2.c	18,9	Vol%	18.7	Vol%

The two blood gases are from same patient done 10 min apart.

In between the patient underwent APNEA TEST

pCO2 increased (5.73→9.65 kPa) pH decreased (7.351→ 7.158) HCO3- increased (23.8 →25.7)

Why BICARB increased???

Why Base Excess?

 Henderson&Hasselbalch fails to quantify the magnitude of [HCO₃⁻] change unless pCO₂ is held constant.

 $CO_2 + H_2O \leftrightarrow [H_2CO_3] \leftrightarrow HCO_3^- + H^+$

- Consequence: acute CO₂ retention causes instant HCO₃⁻ elevation (i.e. before renal HCO₃- retention occurs)
- Solution:
 - Concept of standard bicarbonate (Jorgensen&Astrup, 1957)
 - Concept of Base Excess: reflects roles of non-carbonic buffers

Challenges of bicarbonate-based approach

- Bicarbonate changes with pCO₂ Solved by standard bicarbonate.
- Bicarbonate does not reflect severity of acidosis due to varying noncarbonic buffers Solved by Base excess
- Mixed disorders
 - Respiratory and metabolic: Solved by "Boston rules" Help to distinguish compensation from superimposed disorder
 - Mixed disorders within one system

Temperature-corrected values Albumin 22				
↓ pH(T) _C	7.316	7 .	[7.350 - 7.450	
$\downarrow pCO_2(T)_C$	1.99	kPa	[4.27 - 6.00	
$\uparrow \rho O_2(T)_C$	17.0	kPa	[11.1 - 144	
Acid-base status	. 1			
cHCO₃⁻(P,st) _C	11.6	mmol/L		
cHCO ₃ -(P) _C	7.6	mmol/L		
cBase(Ecf)c	-18.6	mmol/L		
Oximetry values				
sO ₂	99.4	%		
↓ ctHb	93	g/L	[120 - 160	
Hctc	28.5	%		
FO₂Hb	97.4	%	[94.0 - 98.0	
FCOHb	1.2	%	[0.5 - 1.5	
FHHb	0.6	%	[-	
FMetHb	0.8	%	[0.0 - 1.5	
Electrolyte values				
cK ⁺	3.4	mmol/L	[3.4 - 4.5	
↓ cNa ⁺	133	mmol/L	[136 - 146	
† cCa ²⁺	1.30	mmol/L	[1.15 - 1.29	
† cCl-	109	mmol/L	[98 - 106	
Anion Gapc	16.5	mmol/L		
Metabolite values				
cGlu	4.0	mmol/L	[3.9 - 5.8	
	and second second		and the second second second second	

Boston rule: 8/5+1=2.6 kPa RESPIRATORY ALKALOSIS

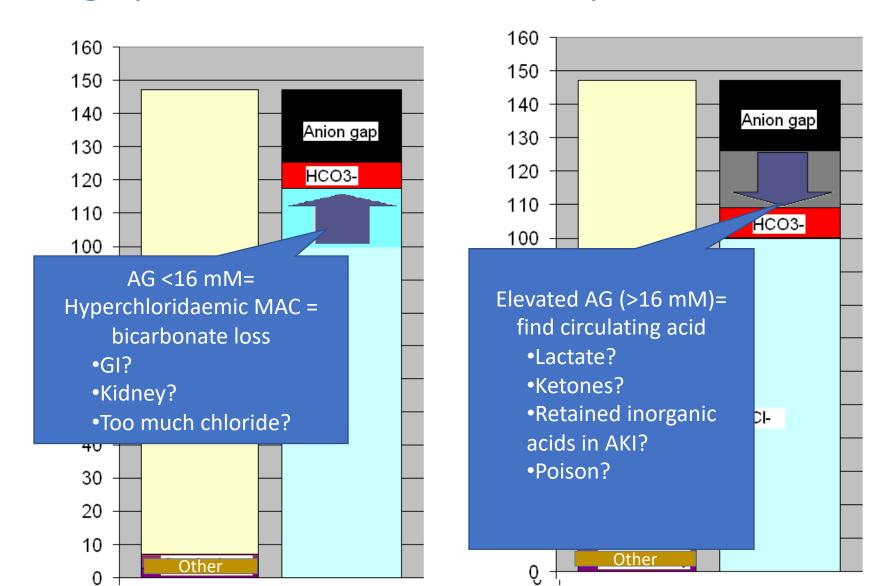
How low should pCO₂ be in metabolic acidosis?

 $HCO_{3}^{-}/5 + 1 \text{ kPa}$

Or

I AE

. .


1.5 HCO₃⁻+ 8 mmHg

(Winters 1963)

Challenges of bicarbonate-based approach

- Bicarbonate changes with pCO₂ Solved by standard bicarbonate.
- Bicarbonate does not reflect severity of acidosis due to varying noncarbonic buffers Solved by Base excess
- Mixed disorders
 - Respiratory and metabolic: Solved by "Boston rules" Help to distinguish compensation from superimposed disorder
 - Mixed disorders within one system

Anion gap = electroneutrality sneaks in

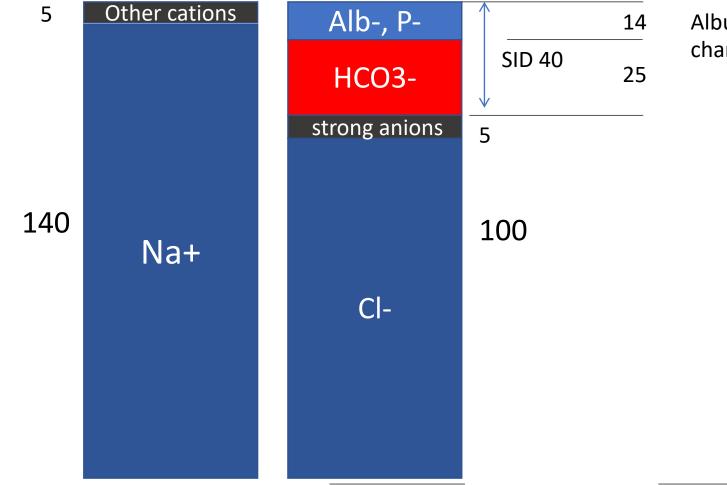
Temperatore serves		200	
$pH(T)_c$	7.432		[7.350 - 7.450
$pCO_2(T)_C$	4.81	kPa	[4.67 - 6.40
$\uparrow pO_2(T)_C$	26.9	kPa	[11.1 - 14.4
Acid-base status			
cHCO ₃ -(P,st)c	24.3	mmol/L	Alb 22 ~/I
cHCO3-(P)c	240	mmol/L	Alb 22 g/L
cBase(Ecf)c	(-0.3)	mmol/L	
Oximetry values	0.0	minove	· · · · · · · · · · · · · · · · · · ·
sO2	99.9	%	
↓ ctHb	120		[135 - 175
		g/L	[155 - 175
Hctc	36.6	%	
† FO ₂ Hb	98.6	%	[94.0 - 98.0
FCOHb	0.8	%	[0.5 - 1.5
FHHb	0.1	%	[-
FMetHb	0.5	%	[0.0 - 1.5
Electrolyte values			
t cK*	4.6	mmol/L	[3.4 - 4.5
↓ cNa ⁺	132	mmol/L	[136 - 146
↓ cCa²*	0.61	mmol/L	[1.15 - 1.29
↓ cCl ⁻	70	mmol/L	[98 - 106]
Anion Gapc	37.1	mmol/L	
Metabolite values			
t cGlu	8.0	mmol/L	[3.9 - 5.8]
t cLac	20	mmol/L	[0.5 - 1.6]
Oxygen status	-		
₽50 ₀	3.40	kPa	

34-years-old, alcoholism, self-neglect, Now presents with after 3 days off legs. Vomiting, confused.

First blood gas in emergency room

Temperature et		
pH(T)c	7.432	[7.350 - 7.450
$pCO_2(T)_C$	4.81 kPa	[4.67 - 6.40
$\uparrow pO_2(T)_C$	26.9 kPa	[11.1 - 14.4
Acid-base status		
cHCO ₃ ⁻ (P,st) _C	24.3 mmol/L	
cHCO3-(P)c	240 mmol/L	Alb 22 g/L
cBase(Ecf)c	(-0.3) mmol/L	
Oximetry values		· · · · · · · · · · · · · · · · · · ·
sO2	99.9 %	
↓ ctHb	120 g/L	[135 - 175
Hctc	36.6 %	
† FO,Hb	98.6 %	[94.0 - 98.0
FCOHb	0.8 %	0.5 - 1.5
FHHb	0.1 %	
FMetHb	0.5 %	[0.0 - 1.5
Electrolyte values		
t cK*	4.6 mmol/L	[3.4 - 4.5
↓ cNa*	132 mmol/L	[136 - 146
↓ cCa ²⁺	0.61 mmol/L	[1.15 - 1.29
↓ cCl ⁻	70 mmol/L	[98 - 106]
Anion Gapc	37.1 mmol/L	
Metabolite values		
t cGlu	8.0 mmol/L	[3.9 - 5.8]
t cLac	20 mmol/L	[0.5 - 1.6]
Oxygen status	2.40	
pood	3.40 kPa	and the second s

Albumin 22g/L


34-years-old, alcoholism, self-neglect, Now presents with after 3 days off legs. Vomiting, confused.

First blood gas in emergency room

Normal status of acid base status Lactate 20 mM Very low chloride

= lactic acidosis + hypochloridaemic alkalosis (due to vomiting?)

Principle of electroneutrality

Albumin 3mM of neg. charge per 10g/l

How can you possibly sell THIS to clinicians???

$$[H^+] \times [HCO_3^-] = K_C \times PCO_2$$

 $[H^+] \times [CO_3^{2-}] = K_3 \times [HCO_3^-]$

 $[SID]-[H^+]-[HCO_3^-]-[CO_3^{2-}]-[A^-]-[OH^-]=0$

 $[\mathsf{H}^+] \times [\mathsf{A}^-] = \mathsf{K}_{\scriptscriptstyle \Delta} \times [\mathsf{H}_{\scriptscriptstyle \Delta}]$

 $[A^{-}]+[HA]=A_{TOT}$

 $[H^+] \times [OH^-] = K'_w$

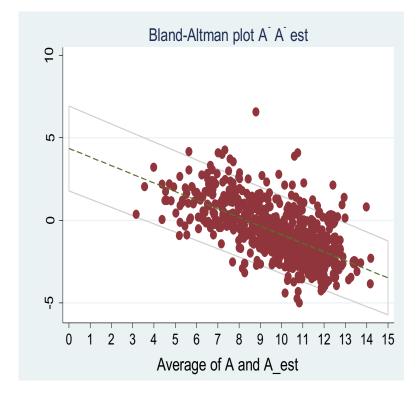
«La République n'a pas besoin de chimistes»

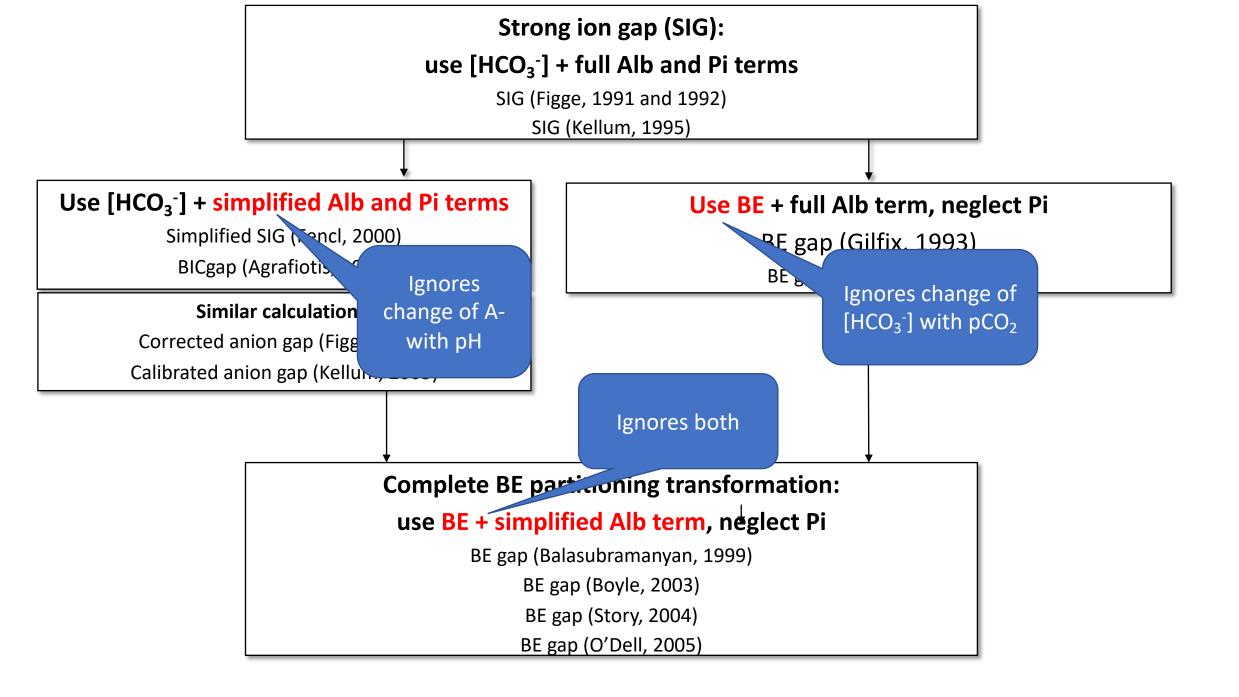
M. Robespierre when announcing the death sentence order over Lavoisier (8th May, 1794)

Clinical applications

- SIDa = { $[Na^+] + [K^+] + [Ca^{2+}] + [Mg^{2+}] [Cl^-]$ }
 - <42 mEq/L acidosis, >42 mEq/L alkalosis
- $A^{-}= \{A|b\times(0.123\times pH-0.631)\} \{Pi\times(0.309\times pH-0.469)\}$
 - <14 mEq/L alkalosis, >14 mEq/L
- SIG = SIDa A⁻ $[HCO_3^-]$
 - SIG>0 acidosis

This is still mathematically too complex for bedside use




Vladimir Fencl

Principles of simplifications

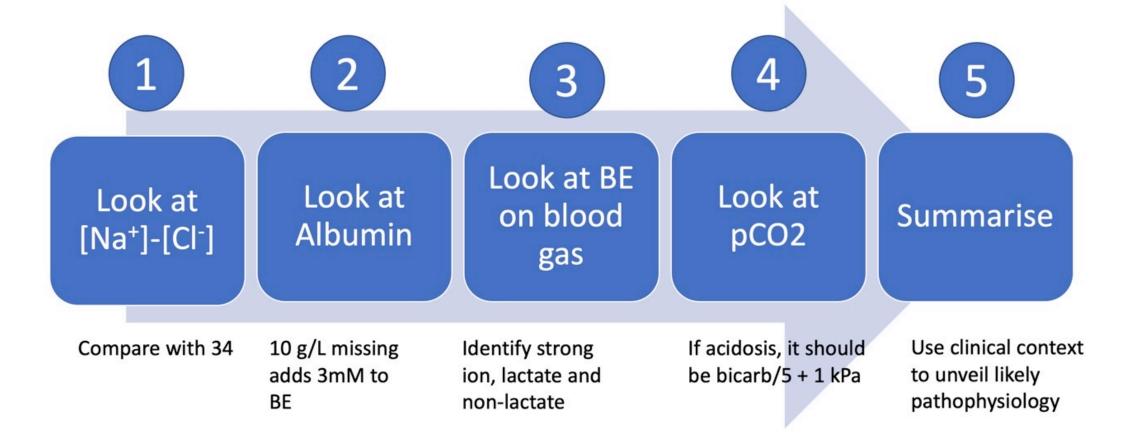
- SIDa:
 - Omission of [K⁺], [Mg²⁺] and [Ca²⁺]
 - [Na⁺]-[Cl⁻] as surrogate
- A⁻
 - pH independent calculation of Alb and P charge
 - Omission of phosphates
- Detection of SIG
 - Ignoring $[HCO_3^-]_{act}$ is pCO₂ Using BE

Handling of buffer anions	Name	Principal author (year)	Equation		
All buffer anions handled in a	Strong ion gap	Figge (1992) ^{1,2}	$[XA^{-}] = \{[Na^{+}] + [K^{+}] + [Ca^{2+}] + [Mg^{2+}] - [Cl^{-}]\} - [HCO_{3}^{-}] - \{Alb \times (0.123 \times pH - 0.631)\} - \{Pi \times (0.309 \times pH - 0.469)\}$	~0	
pH-dependent manner	(SIG)	Kellum (1995) ³	SIG = {[Na ⁺] + [K ⁺] + [Ca ²⁺] + [Mg ²⁺] - [Cl ⁻] - [Lac ⁻] - [urate]} - [HCO ₃ ⁻] - {Alb×(0.123×pH - 0.631)} - {Pi×(0.309×pH - 0.469)}	0	
Incomplete BE partitioning transformation		Gilfix (1993) ⁹	$[UA^{-}]$ = BE(B) - {0.3×([Na^{+}] - 140)} - {102 - [Cl^{-}]×\frac{140}{[Na^{+}]}} - {(0.148×pH - 0.818)×(42 - Alb)}		
	Base excess gap	Balasubramanyan (1999) ¹⁰	$[UA^{-}] = BE(B) - \{0.3 \times ([Na^{+}] - 140)\} - \{102 - [Cl^{-}] \times \frac{140}{[Na^{+}]}\} - \{0.34 \times (45 - Alb)\}$		
Complete BE partitioning transformation		Boyle (2003) ¹¹	$[UA^{-}] = BE(Ecf) - \{[Na^{+}] + [K^{+}] - [Cl^{-}] - [Lac^{-}] - 42\} - \{0.25 \times (40 - Alb)\}$	0	
		Story (2004) ¹²	$[UA^{-}] = BE(Ecf) - \{[Na^{+}] - [Cl^{-}] - 38\} - \{0.25 \times (42 - Alb)\}$		
	Simplified SIG	Fencl (2000) ¹³	$SIG = \{[Na^+] + [K^+] + [Ca^{2+}] + [Mg^{2+}] - [Cl^-]\} - [HCO_3^-] - \{0.28 \times Alb\} - \{1.8 \times Pi\}$	~ 0	
A- simplification	Bicarbonate gap	Agrafiotis (2018) ¹⁴	$BIC_{gap} = \{[Na^+] + [K^+] - [Cl^-] + 6.5\} - [HCO_3^-] - (0.25 \times Alb) - (2 \times Pi)$	~ 0	
	Corrected anion gap	Figge (1998) ¹⁵	$AG_{c} = \{ [Na^{+}] + [K^{+}] - [Cl^{-}] \} - [HCO_{3}^{-}] + 0.25 \times (42 - Alb)$	<16 mmol/ L	

R ² of unmeasured anion effect vs SIG						
	Full Alb and Pi term Simplified Alb and Pi term Combined simplificat					
	[HCO ₃ -]	[HCO ₃ -]	BE(P)	BE(Ecf)		
Full calculation	1.00	0.99	0.98	0.88		
1) Rounding of coefficients	not applicable	0.98	0.98	0.89		
2) Omission of [Ca2+]	0.99	0.97	0.99	0.89		
3) Omission of [Mg2+]	0.98	0.96	0.96	0.86		
4) Omission of [K+]	0.96	0.94	0.96	0.88		
5) Omission of [Phos-]/Pi	0.93	0.94	0.88	0.76		
Combination of 1-4	0.91	0.88	0.92	0.86		
Combination of 1-5	0.88	0.89	0.86	0.76		

area under ROC curve (to detect non-lactate SIG>6 mEq/l)

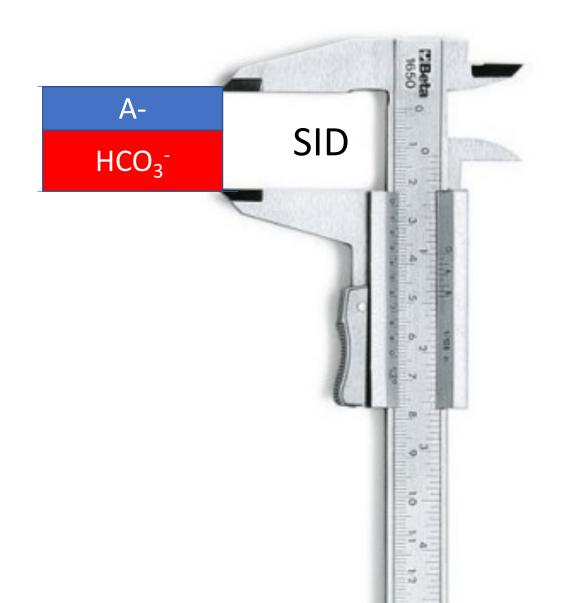
17 174 ICU patients with BG taken on admission


AmsterdamUMCdb

3985 ICU patients with full dataset to calculate SIG

Full Alb and Pi term Simplified Alb and Pi term $[HCO_3^-]$ BE(P) BE(Ecf) $[HCO_3^-]$ Full calculation 1.000 0.996 0.995 0.961 not applicable 1) Rounding of coefficients 0.994 0.995 0.964 2) Omission of [Ca2+] 0.993 0.964 0.999 0.995 0.952 3) Omission of [Mg2+] 0.991 0.987 0.985 4) Omission of [K+] 0.987 0.979 0.986 0.962 5) Omission of [Phos-]/Pi 0.977 0.981 0.964 0.928 **Combination of 1-4** 0.970 0.962 0.972 0.953 Combination of 1-5 0.956 0.958 0.921 0.949

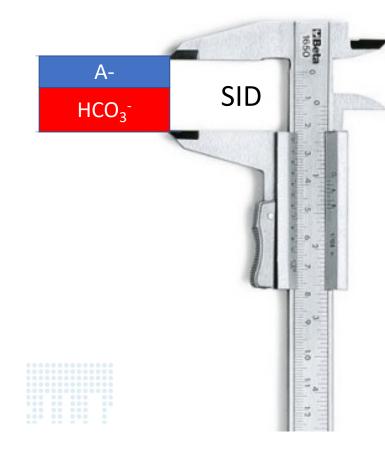
(Krbec, Duska & Elbers 2023 manuscript in preparation)


Validated approach to combined disorders

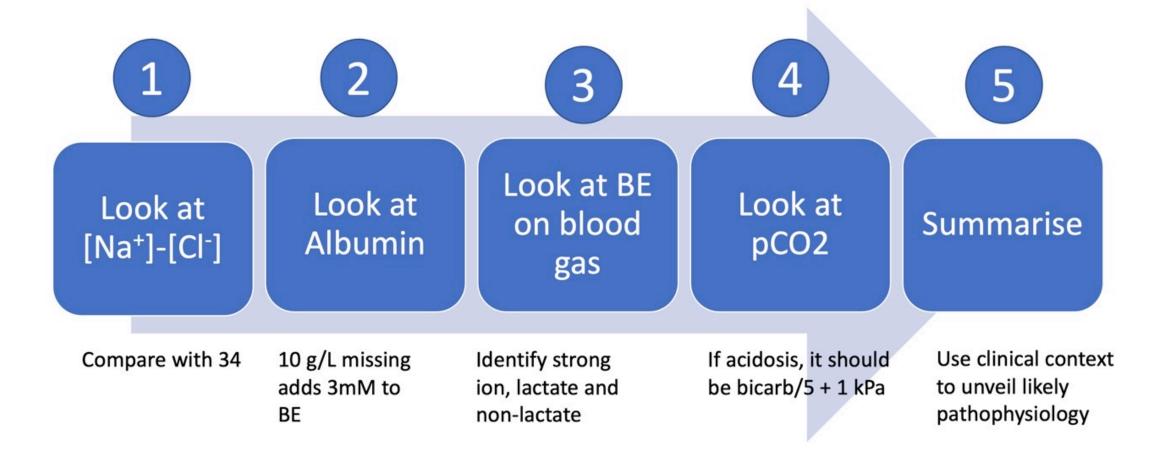
(BE partitioning method modified as per Story, BJA 2004)

Key concept

SID defines anion space shared by $A^{-} a HCO_{3}^{-}$


Electroneutrality used for diagnosis

- SID (approximated as [Na⁺]-[Cl⁻] = 34)
 - Low = acidosis
 - High = alkalosis
- Weak acids (each 10 g/L of albumin holds 3mM of negative charge)
 - Low = alkalosis
 - High = acidosis
- Strong ions


Note: There are 2 mechanismis how SID can change:

- Na/Cl (e.g. hyperchloridaemia after normal saline)
- Free water changes (e.g. concentration alkalosis in DI)

- Each disorder changes BE in predictable way, eg.
 - 1 mM decrease in Na-Cl = BE -1 mM
 - 1 mM increase in lactate or other strong acid = BE -1 mM
 - 10 g/L decrease in albumin = BE +3mM
- Concentrations of Na+, Cl-, albumin are known and predict certain BE. If real BG is lower, this means circulating unmeasured strong acids.
- This can all be done easily by using mental arithmetic only

Practical five-step approach

(BE partitioning method modified as per Story, BJA 2004)

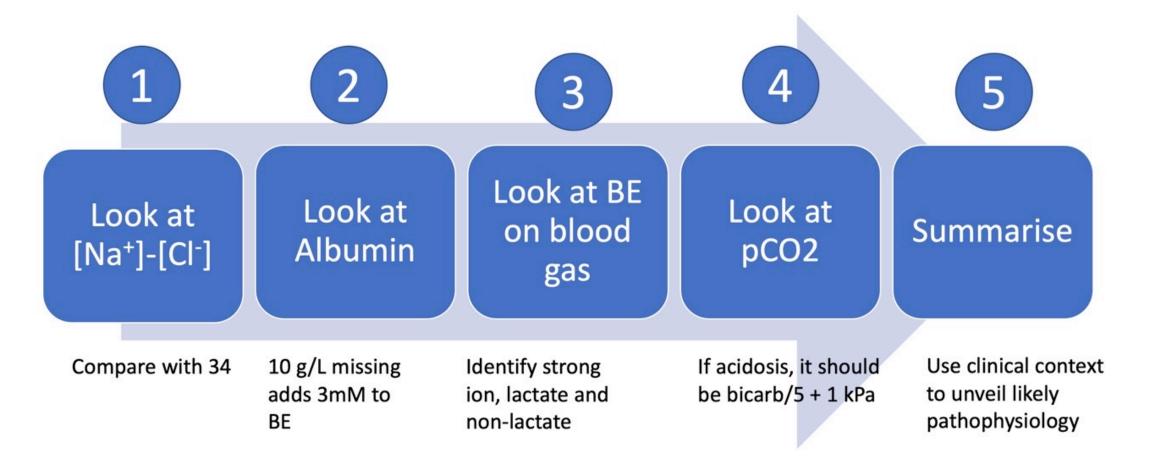
Temperatore etter		38		
pH(T)c	7.432		[7.350 - 7.450	
$pCO_2(T)_C$	4.81	kPa	[4.67 - 6.40	
$\uparrow pO_2(T)_c$	26.9	kPa	[11.1 - 14.4	
Acid-base status				
cHCO3-(P,st)c	24.3	mmol/L	Alb 22 a/1	
cHCO3-(P)c	240	mmol/L	Alb 22 g/L	
cBase(Ecf)c	(-0.3)	mmol/L		
Oximetry values	0		· · · · · · · · · · · · · · · · · · ·	
sO ₂	99.9	%		
↓ ctHb	120	g/L	[135 - 175	
Hctc	36.6	%		
t FO,Hb	98.6	%	[94.0 - 98.0	
FCOHb	0.8	%	[0.5 - 1.5	
FHHb	0.1	%	[-	
FMetHb	0.5	%	[0.0 - 1.5	
Electrolyte values				
t cK*	4.6	mmol/L	[3.4 - 4.5	
↓ cNa ⁺	132	mmol/L	[136 - 146	
↓ cCa²'	0.61	mmol/L	[1.15 - 1.29	
↓ cCl ⁻	70	mmol/L	[98 - 106]	
Anion Gapc	37.1	mmol/L		
Metabolite values				
t cGlu	8.0	mmol/L	[3.9 - 5.8]	
t cLac Oxygen status	20	mmol/L	[0.5 - 1.6]	
p50e	0.40	L/De		
1.000	3.40	kPa		

34-years-old, alcoholism, self-neglect, Now presents with after 3 days off legs, Vomiting, confused.

Step 1: Na-Cl =62, corresponds to BE = 62-34 - +28 mM

Step 2: Albumin 22 g/L, corresponds to BE = +6 mM

Step 3: BE from step 1 and 2 combined should be +34, but it is 0, this means 34 of "unmeasured" anions.


Step 4: pCO2 is and should be normal Step 5: Synthesis?

Temperatore serves		34		
pH(T)c	7.432		[7.350 - 7.450
$pCO_2(T)_C$	4.81	kPa	. [4.67 - 6.40
$pO_2(T)_c$	26.9	kPa	1	11.1 - 14.4
Acid-base status				
cHCO ₃ ⁻ (P,st) _c	24.3	mmol/L		
cHCO3-(P)c	240	mmol/L	1	Alb 22 g/L
	17			
cBase(Ecf)c	-0.3	mmol/L		
Oximetry values				
\$O2	99.9	%		e .
↓ ctHb	120	g/L	[135 - 175
Hctc	36.6	%		
† FO,Hb	98.6	%	1	94.0 - 98.0
FCOHb	0.8	%	[0.5 - 1.5
FHHb	0.1	%	[4-
FMetHb	0.5	%	1	0.0 - 1.5
Electrolyte values				
† cK*	4.6	mmol/L	1	3.4 - 4.5
↓ cNa⁺	132	mmol/L	1	136 - 146
↓ cCa²*	0.61	mmol/L	1	1.15 - 1.29
↓ cCl ⁻	70	mmol/L	1	98 - 106]
Anion Gapc	37.1	mmol/L		
Metabolite values				
t cGlu	8.0	mmol/L	1	3.9 - 5.8]
t cLac	(20)	mmol/L	1	0.5 - 1.6]
Oxygen status	~			
₽50 ₀	3.40	kPa		

34-years-old, alcoholism, self-neglect, Now presents with after 3 days off legs, Vomiting, confused.

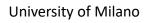
Hypochloridemic alkalosis (+28 mM): due to ALD, vomiting Hypoalbuminaemic alkalosis (+6mM) Strong ion acidosis - lactate (20mM) - unknown (14 mM)-ketons? No respiratory disorder

(BE partitioning method modified as per Story, BJA 2004)

Conclusions: Stewart or Astrup?

- Stewart and Astrup!
 - Classical, Bostonian and Stewart approaches are complementary, not contradictory
- Classic approach useful and good enough for most cases
 - Looks first at the final result and then try to find explanation
 - Good framework to understand concept of compensation
- Electroneutrality-based approach
 - Looks first at determinants of acid-base status and then the result
- Developed by geniuses, but useful for ordinary doctors

Thank you


Martin Krbec

Charles University, Fac Med 3

& University of Milano

Thomas Langer

Serena Brusatori

Medical University of Göttingen

Petr Waldauf

FNKV University Hospital in Prague

Francesco Zadek

University of Milano

Katerina Koudelkova

Charles University, Fac Med 3

Paul WG Elbers

UMC Amsterdam

CO₂ Tonometer

Aged 34 years, bought on e-Bay

