

František Duška

Charles University, 3rd Fac Med, FNKV University Hospital in Prague, Czech Republic

Objectives

- Physiology
- Experimental data
- Clinical data
- Everyday use

The Case

- Elderly man with good performance status
- Admitted after elective Whipples pro ampuloma
- Complicated procedure, 2L blood loss, multiple Pringles maneuvers
- O/E: A + B stable, major concern is lac 2.8...7.9mM and raising noradrenaline requirements (0.8 ug/ml), UO 60ml/min, echo: hypercontractile LV, PLRT negative, given 2xfluid challenges no effect
- CRT normal, ScvO2 71.3%, Hb 121 g/L

Back to basics

- Clinical signs
- Waveforms
- Echo + monitors
- Lactate
- Fick-principle derived indices
 - ScvO2
 - $pCO_2 gap = PcvCO_2 PaCO_2$

Cardiac output (L/min)

REVIEW

Central venous oxygenation: when physiology explains apparent discrepancies

Pierre Squara

ScvO2 will depend on SaO2, Hb and in situations where an O₂ diffusion barrier exists (e.g. non-functional and obliterated capillaries)

ProMISe Trial, NEJM 2015

In patients with septic shock who were identified early and received intravenous antibiotics and adequate fluid resuscitation, hemodynamic management according to a strict EGDT protocol did not lead to an improvement in outcome.

Can pCO₂ gap outperform ScvO₂ in detecting low flow states?

Physiology

- CO₂ production
 - Aerobic = decarboxylation Krebs cycle
 - Anaerobic = transient if ↓pH "Coca-cola effect"
- $RQ = VCO_2/VO_2$
 - Normally depends on substrates oxidised
 - Oxygen limitation will also stop aerobic CO₂ production, but RQ will rise above one due to Coca Cola effect

Venoarterial CO₂ difference during regional ischemic or hypoxic hypoxia

J Appl Physiol 89: 1317–1321, 2000.

BENOIT VALLET,¹ JEAN-LOUIS TEBOUL,² STEPHEN CAIN,³ AND SCOTT CURTIS⁴

Any type of tissue hypoxia will reduce CO2 production by the tissue (along with the reduction of oxygen use)

Venoarterial CO_2 difference during regional ischemic or hypoxic hypoxia

J Appl Physiol 89: 1317–1321, 2000.

BENOIT VALLET,¹ JEAN-LOUIS TEBOUL,² STEPHEN CAIN,³ AND SCOTT CURTIS⁴

... pCO_2 gap = $PcvCO_2 - PaCO_2$ Is a marker of tissue blood flow, but not tissue hypoxy!

The Case

- Elderly man with good performance status
- Admitted after elective Whipples pro ampuloma
- Complicated procedure, 2L blood loss, multiple Pringles maneuvers
- O/E: A + B stable, major concern is lac 2.8...7.9mM and raising noradrenaline requirements (0.8 ug/ml), UO 60ml/min, echo: hypercontractile LV, PLRT negative, given 2xfluid challenges no effect
- CRT normal, ScvO2 71.3%, Hb 121 g/L
- pCO2 gap 0.3 kPa (2.3 mmHg) = no signs of tissue hypo

	OR		ICU							
Time	12:31	14:15	16:13	17:59	19:55	20:42	23:49	0:38	1:18	5:15
Laktát	1.7	2.8	4.3	5.4	7.2	7.9	10.5	11.9	12.4	19

pCO2 gap 0.3 kPa (2.3 mmHg) = No hypoperfusion

Cause was fulminant liver failure with reduced lactate clearance

What pCO₂ gap adds to ScvO₂ measurement?

- Helps to detect patients who might benefit from increasing cardiac output despite having ScvO2 > 70% (eg. microcirculatory shunts)
- Help to diagnose "nonstagnant hyperlactatemia" and avoid futile fluid boluses

Pitfalls of pCO₂ use

Haldane effect: oxygenation of Hb enhances CO2 release

Coca-cola efect

Tissue acidosis enhances CO₂ release

Pitfalls

- pCO2 gap is a surrogate for CCO2 gap and relation of pCO2 and CCO2 is not strictly linear
- Normally deoxygenation and mild acidification of the blood in tissues cancel out each other and pCO₂ vs. CCO₂ relation remains linear, but hyproxemia (e.g. FiO2) or respiratory alkalosis might cause false pCO₂ elevation

For constant flow, central venous hyperoxemia increases CO₂ gap

⁽Saludes et al. 2016)

Conclusions

- pCO₂ gap can help in the differential diagnosis of shock and/or hyperlactatemia
- Mind the gap before giving fluid for elevated lactate
 - pCO₂ gap >6 mmHg (0.8 kPa) seems to be a good marker of tissue hypoperfusion (fluids may help)
 - pCO₂ gap remains normal in aneamic, hypoxic and cytopatic hypoxia (fluids will not help)
- Interpretation should be cautious in hyperoxemia or respiratory alkalosis, which widen pCO2 gap artificially
- Now we need clinical trials and look at patient-centred outcomes

Thank you

