defining hemodynamic decompensation, depict clinical condition of intensive care patients correctly?

Kathrin Stich

Prof. Dr. med. Rolf Dembinski

Malte Hillmann

Dr.-Ing. Christian Mandel

Dr.-Ing. Serge Autexier

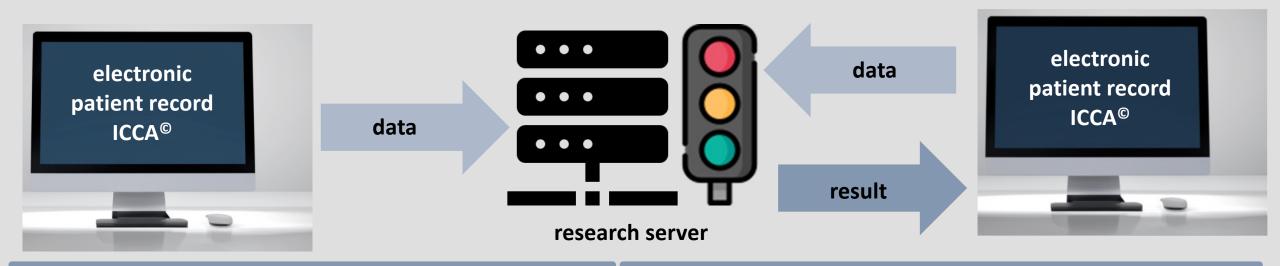
Prof. Dr. Christoph Lüth

Christoph Int-Veen

Background: The RIDIMP-Project KI-SIGS

Risk Indicators for cardiopulmonary Decompensation in Intensive Care Units by Monitoring vital Parameters

Detection and prediction of hemodynamic and pulmonary decompensation in intensive care patients based on an artificial intelligence algorithm > "early warning system"


2 major challenges:

Definition of hemodynamic and pulmonary decompensation

Training process AI algorithm

Methods and procedure

1/h

Step I

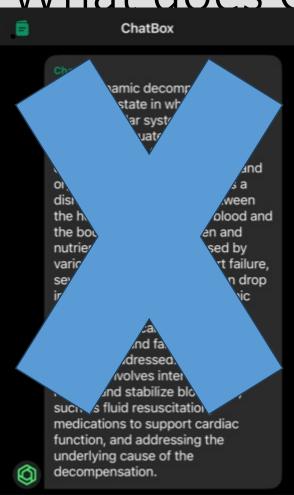

Training of the AI algorithm > 10k cases of historical patient data (2013 - 2021)

Step II

Evaluation and validation on live data > 600 current treatment cases (02 - 05/2023)

Results?

- 1. Calculated score
- 2. Predicted score after 30 h observational time



11th International Baltic Congress of Anaesthesioogy and Intensive care September 28–30, 2023, Tartu, Estonia Estonian National Museum

How to define hemodynamic decompensation?

What does Chat GPT et al. say?

Scoring systems including hemodynamic

parameters:

APACHE IV (Acute Physiology And Chronic Health Evaluation)

Zimmermann et al. 2006

SAPS III (Simplified Acute Physiology Score)

Metnitz et al. 2006, Moreno et al. 2006

qSOFA (Quick Sequential Organ Failure Assessment)

Singer et al. 2016

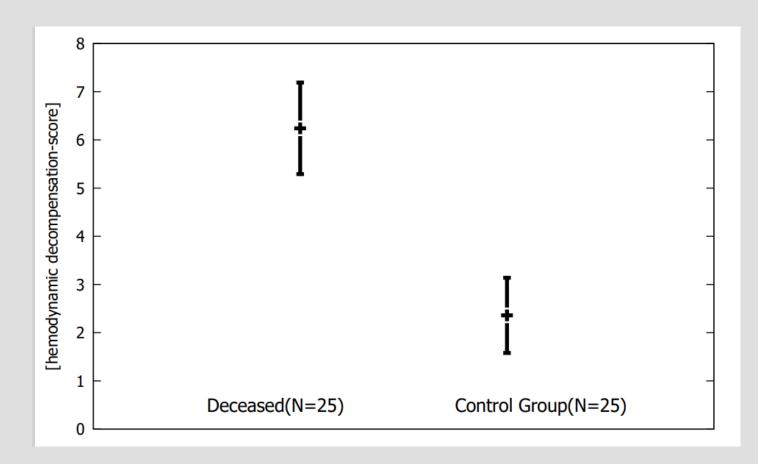
MODS (Multiple Organ Dysfunction Score)

Marshall et al. 1995

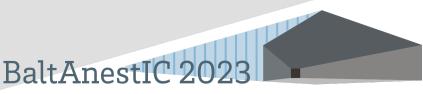
MOF (Multiple Organ Failure)

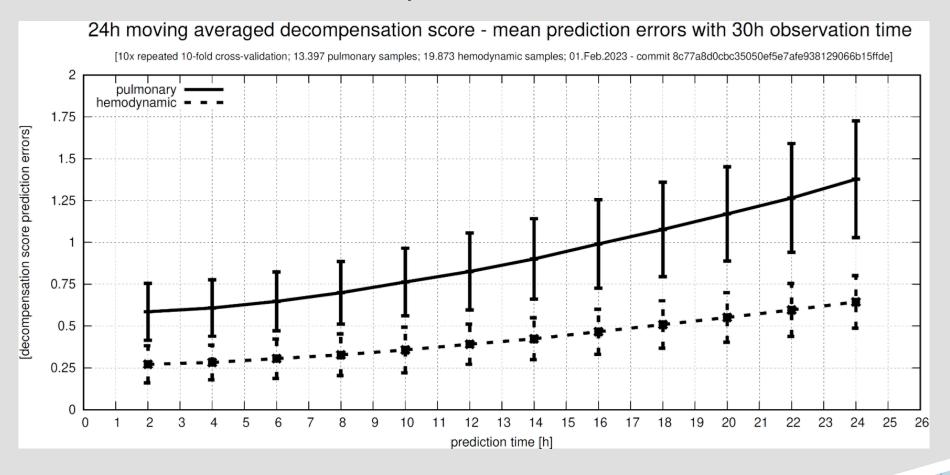
Gorris et al. 1985

How to define hemodynamic decompensation? The RIDIMP-Score


Severity class of decompensation: 0-3 none/4-5 moderate/>5 severe

parameter	0	1	2	3	4
heart rate [bpm]	50-90	45-49 / 91-100	40-44 / 101-110	<40/>110	-
mean arterial pressure [mmHg]	>64	60-64	50-59	<50	-
catecholamine therapy	none	singular	singular	combined	singular or combined
norepinephrine [μg/kg KG/min]	0	0.01-0.09	0.1-0.39	0.1-0.39	>0.5
epinephrine [μg/kg KG/min]	0	0.01-0.09	0.1-0.39	0.1-0.39	>0.5
dobutamine [µg/kg KG/min]	0	1-3	3.1-5	3.1-5	>5
vasopressin [IE/min]	0	0	0	0	>0.01


Correlation between critical clinical endpoints *CPR*, death, intubation, readmission to ICU and a high score?


Results: Scoring results /endpoint "death"

- Interim evaluation
- Raw data
- High maximum scoring results 24 hours before deceasing in contrast to the control group who survived

Results: Mean prediction errors

BaltAnestIC

What happens next? Current and future work...

© Gesundheit Nord GmbH

- 1. Final statistical analysis regarding all clinical endpoints
- 2. Comparison of the scores with medical assessment
- 3. Individual case analysis
- 4. Consideration of score dynamics
- 5. Optimization of moving average filter interval

BaltAnestIC