Model-informed precision dosing of antibiotics: moving beyond one model-one target fits all

Hiie Soeorg

Research Fellow of Medical Microbiology

Department of Microbiology

Medical Faculty

University of Tartu

Estonia

Antibiotics in intensive care units

- Commonly used (55-67% of patients) (Versporten et al. 2018)
- Therapeutic drug monitooring (TDM) is recommended for betalactams, vancomycin, aminoglycosides, linezolid, teicoplanin, voriconazole (Abdul-Aziz et al. 2020)
- Standard doses perform poorly meta-analysis of beta-lactams (Mangalore *et al.* 2022)
 - Target attainment 26%
 Clinical cure 57%
 Microbiological cure 68%
 Mortality 21%
 So%
 RR 1.85 (95% CI 1.08 to 3.16)
 RR 1.17 (95% CI 1.04 to 1.31)
 RR 1.14 (95% CI 1.03 to 1.27)
 RR 0.85 (95% CI 0.69 to 1.04)

Dose recommendations

• Based on population PK models

• Variability in CL and V, e.g.,

Time (h)

 $CL = \theta \cdot f(Patient \ characteristics) \cdot e^{\eta},$

PK models for dose recommendations

 Standard dose: dose that achieves the target in a population (with a range of chracteristics, e.g., weight, renal function)

100% fT>MIC

PK models for dose recommendations

• We could use the same procedure for a particular patient

PK models for dose recommendations

• After TDM we can estimate individuaal pharmacokinetic parameters

Model-informed precision dosing

- Approach to maximize the efficacy and minimize toxicity
- Relevant
 - Highly variable PK
 - Narrow therapeutic window
- Use by physicians/pharmacistis (Williams *et al.* 2023)
 - Vancomycin: 11% (highincome countries 17%)
 - Beta-lactams: 3%

CL – clearance MIC – miinimum inhibitory concentration PK - pharmacokinetic V – volume of distribution

The benefit of individualized dosing

• Relative risks (95% confidence interval)

	MIPD* or TDM vs no dose	MIPD vs TDM or empiric	
	adjustment of anti-infectives (Sanz Codina <i>et al</i> . 2023)	dosing of vancomycin (He et al. 2020)	
Target attainment rate 🔨	1.41 (1.13-1.76)	1.59 (1.49-1.70)	
Treatment failure ↓	0.70 (0.54-0.92)		
Nephrotoxicity ↓	0.55 (0.31-0.97)	0.57 (0.46-0.71)	

* Subgroup analysis based on the method of individualized dosing – no differences for mortality, treatment failure, clinical cure, treatment duration or nephrotoxicity.

- No difference in mortality, length of hospital stay
- Cost-benefit: AUC-guided vancomycin dosing using MIPD software may save up to US\$ 2065 per patient (costs included vancomycin concentration measurements, MIPD software, acute kidney injury hospitalization costs) (Lee *et al.* 2021)

AUC – area under the curve MIPD – model-informed precision dosing TDM – therapeutic drug monitoring

Prospective validation of MIPD of vancomycin

- Neonates/infants (n=48)
- Historical control group (n=66) standard doses + TDM-based dose adjustment

After the first optimized dose	20%	50%	0.002
After any adjusted dose	37%	62 %	0.01

Target (C_{trough} 10...15 mg/L) attainment

Control

group

Kalamees et al. at ESPID 2023

Study

group

p-

value

C_{trough} – trough concentration MIPD – model-informed precision dosing TDM – therapeutic drug monitoring

C_{trough} 10...20 mg/L after any dose adjusted 56.1% in a study by Frymoyer *et al*. 2020.

PK model for MIPD

 The PK model with the best predictive performance in a validation dataset

MIPD – model-informed precision dosing PK - pharmacokinetic TDM – therapeutic drug monitoring

- TDM results available
 - No TDM results available

Observed (mg/L)

PK model for MIPD

- Different models may predict very different concentrations for a specific patient
- Heterogeneous patient population → one model for all could result in "incorrect model" for some patients → inappropriate dose recommendations

Simulated vancomycin pharmacokinetic profiles of a standard patient (male, 50 years old, body weight 75 kg, body height 1.7 m, serum creatinine 85 µmol/L, twice daily vancomycin dosing of 1000 mg with an infusion length of 2 h)

Which model to choose?

• Some patients are considered to be more similar in terms of characteristics influencing PK, e.g., requiring RRT

PK – pharmacokinetic RRT – renal replacement therapy

Greppmair et al. 2023

Subgroup-identification for model selection

 Genetic algorithm: subset of vancomycin pharmacokinetic models → determined the best fitting model for each patient → built a classification tree to predict the model

Improving models for MIPD

- Machine learning methods
 - Outperform PK models (7 studies), but not in all scenarios
 - May be unreliable when extrapolating to unseen time points (Janssen et al. 2022)
 - ML models not interpretable (Li et al. 2023)

Physiologically based PK models

- Anatomical and physiological parameters and drugspecific data (e.g., physicochemical properties)
- Require detailed data

Schematic outline modified from Verscheijden *et al.* 2019

Target in MIPD

- MIC-based PKPD targets
 - MIC not known: negative blood cultures (52-80% in neonates/infants) (Fleischmann et al. 2021, Wagstaff et al. 2019, Lutsar et al. 2020)
 - Variability of an MIC measurement
 - Acceptable deviation of one dilution from the mode (Mouton et al. 2018)
 - A single measurement indicates whether the strain is wild-type (without acquired resistance) (Mouton *et al*. 2018)
 - PKPD target varies depending on PK in case of meropenem (Kristoffersson et al. 2016)
 - Augmented renal clearances: T>MIC
 - Renal dysfunction: AUC/MIC

PKPD

T-time

Tissue penetration of antibiotics varies

• Penetration rate of amnicillin into lung epithelial lining fluid in neonates is 8%–80% (Padari et al. 2021) AUC - area under the curve MIC - miinimum inhibitory concentration - pharmacokinetic-pharmacodynamic

Biomarker-based PKPD targets

• PKPD model of teicoplanin in neonates

AUC – area under the curve CRP – C-reactive proteiin PKPD – pharmacokinetic-pharmacodynamic

 EC_{50} is the concentration of teicoplanin (mg/L) that produces the half-maximal effect (CRP inhibition)

Ramos-Martin et al. 2016

Biomarker dynamics

• C-reactive protein (CRP) ratio (in relation to CRP at the start of treatment) response to antibiotics in children with sepsis

Lanziotti et al. 2018

Meropenem and CRP PKPD model

PKPD – pharmacokinetic-pharmacodynamic

Gestational age 27 weeks initial CRP 35.8 mg/L, meropenem 20 mg/kg q12 h:

CRP

Meropenem

Conclusion

- MIPD
 - Improves target attainment
 - Reduces toxicity
 - More evidence needed
- Model
 - One model for all → model selection
 - Machine learning, PBPK?
- Target
 - Biomarker-based PKPD targets?

CL – clearance MIC – minimum inhibitory concentration MIPD – model-informed precision dosing PBPK – physiologically-based PK PK – pharmacokinetic PKPD – PK-pharmacodynamic V – volume of distribution

Thank you!

- Tuuli Metsvaht
- Irja Lutsar
- Maarja Hallik
- Riste Kalamees
- Helgi Padari
- Hanna Kadri Laas
- Kristiina Naber
- Artjom Afanasjev
- Carmen Tiivel
- Ilona Tukmatšova
- Eveli Kallas

- Juri Karjagin
- Kadri Tamme
- Villem Nigu
- Martin Padar
- Mari-Liis Ilmoja
- Karin Kipper
- Koit Herodes
- NeoMero Consortium
- All the participants of the studies

- Tartu University Hospital
 - Intensive Care 1
 - Intensive Care 2
 - Intensive Care 3
 - Department of Paediatric Intensive Care
- Tallinn Children's Hospital
 - Department of Anaesthesiology and Intensive Care
- East Tallinn Central Hospital
 - Neonatology department
- Tartu University Hospital development fund 8090 through project "Digital solutions to improve the effectiveness and safety of antibiotic treatment in Tartu University Hospital" (562/2021)
- EU 7th Framework Programme (242146)
- Estonian Research Council (PUT1197 and IUT34-24)
- Estonian Target Financing (SF0180004s12)
- Estonian Science Foundation (8799)
- Archimedes Foundation (3.2.1001.11–0032)
- European Regional Development Fund

PD models for toxicity

• Gentamicin nephrotoxicity in neonates

