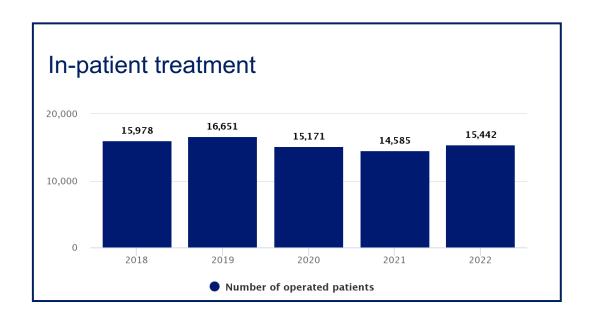
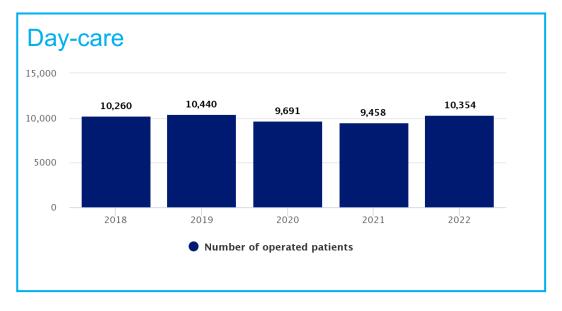


Early postoperative nutrition improves outcome

CON

Joel Starkopf


Department of Anaesthesiology and Intensive Care
University of Tartu
Tartu University Hospital
Estonia



What is the target population?

- Elective surgery?
- Emergency surgery?
- Gastrointestinal surgery?
- ICU postoperative patients?

What is the target population?

- Elective surgery?
- Emergency surgery?
- Gastrointestinal surgery?
- ICU postoperative patients?

What are the outcomes?

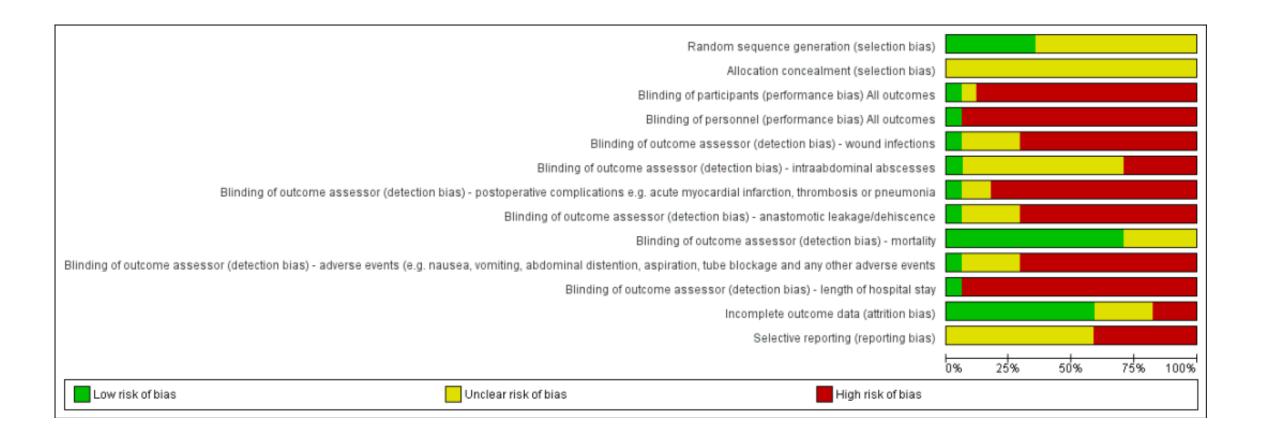
- Mortality?
- Severe complications?
- Hospital length of stay?

What is the intervention?

- Oral diet?
- Enteral nutrition?
- Parenteral nutrition?
- What is early?
 - ≤24 hours?
 - ≤48 hours?

Herbert G, et al. Early enteral nutrition within 24 hours of lower gastrointestinal surgery versus later commencement for length of hospital stay and postoperative complications. Cochrane Database Syst Rev. 2019 Jul 22;7(7):CD004080

PICO element	Description
Population	 Lower GI surgery (below ligamentum Treizi) adults >18 yrs, in-hospital setting
Intervention	Early enteral nutrition (oral or tube feeding within 24 hours)
Comparator	EN nutrition later
Outcomes	Length of hospital stay
	 Complications (anastomotic leak, intra-abdominal abscesses, wound infection, pneumonia, nausea and vomiting)
	Mortality


Population and reported outcomes

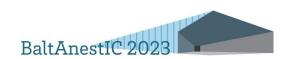
17 randomized controlled trials with 1437 participants

Outcome	No of studies	No of participants
 Lenght of stay 	16	1346
 Wound infection 	12	1181
 Intraabdominal abscesses 	6	554
 Anastomotic leakage/dehiscence 	13	1232
 Pneumonia 	10	954
 Mortality 	12	1179
 Vomiting 	7	613

Most studies were at high or unclear risk of bias in two or more domains

Mortality

Outcomes	Anticipated absolute effects* (95% CI)		Relative effect (95% CI)	No. of partici- pants (studies)	Quality of the evidence (GRADE)	Comments	
	Assumed risk with no calo- ries	Corresponding risk with early en- teral nutrition		, ,	(33332)		
Mortality	30 per 1,000	17 per 1,000 (6 to 46) (24 fewer to 16 more)	RR 0.56 (0.21 to 1.52)	1179 (12 RCTs)	⊕⊕⊝⊝ LOW ⁴	Absolute risk reduction: 0.013 Thus, for every 1000 participants receiving early feeding, 13 less mortality compared to later commencement. Trial Sequential Analysis showed that the information size was not large enough to rule out that early feeding versus control reduces the risk ratio of mortality by 30% or more	


- Mortality was reported in 12 studies (1179 participants), and showed **no between-group differences** (RR = 0.56, 95%Cl, 0.21 to 1.52, P = 0.26, I_2 = 0%, Chi₂ = 3.08, P = 0.96, low-quality evidence).
- The most commonly reported cause of death was anastomotic leakage, sepsis and acute myocardial infarction.

Severe complications

Complication -	Anticipated	absolute effect	Risk Ratio	95%CI	QoE Grade	
Complication	Control	EEN	RISK RALIO	95 / ₀ Cl		
Wound infection	91 per 1000	91 per 1000 (33 fewer to 47 more)		0.64 to 1.52	Very low	
Anastomotic leakage/dehiscence	47 per 1000	37 per 1000 (18 fewer to 29 more)	0.78	0.38 to 1.61	Low	
Intraabdominal abscesses	29 per 1000	29 per 1000 (21 fewer to 81 more)	1.00	0.26 to 3.80	Low	
Pneumonia	21 per 1000 18 per 1000 (14 fewer to 30 more) 231 per 1000 284 per 1000 (9 fewer to 134 more)		0.88	0.32 to 2.42	Low	
Vomiting			1.23	0.96 to 1.58	Low	

Trial Sequential Analysis showed that the information size was **not large enough** to rule out that early feeding versus control reduces the risk ratio of the complications by set target

Length of hospital stay

Outcomes	Anticipated absolute effects* (95% CI) Assumed risk Corresponding with no calorisk with early enries teral nutrition		Relative effect (95% CI)	No. of partici- pants (studies)	Quality of the evidence (GRADE)	Comments
Length of hospital stay (days)	The mean LoS of control groups ranged from six to 24 days	MD 1.95 lower (2.99 lower to 0.91 lower)	-	1346 (16 RCTs)	⊕⊕⊝⊝ LOW1	Trial Sequential Analysis showed that the bound- ary for benefit was crossed. This indicates that early feeding seems to decrease the mean length of hos- pital stay by at least one day if risk of bias and other threats to the validity can be disregarded

Mean difference (MD) in LoS was 1.95 (95% CI, -2.99 to -0.91, P < 0.001) days shorter in the EEN group.

What are the factors determining the lenght of hospital stay?

Does early postoperative nutrition improves outcome?

We believe in it, but in reality we do not know...

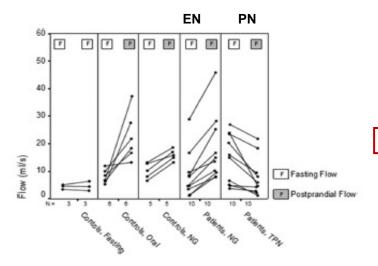
At least, early EN is not worst than "nil per os"....

... in this subgroup of patients

Is there any population where early postoperative EN may cause harm?

- GI perforation and peritonitis?
 - Requiring ICU admission
 - Anrepaired anastomotic leak and fistulas
 - High output stomas
- Acute mesenteric ischaemia?
 - After reperfusion therapy

GI perforation and peritonitis


- Data from elective surgery should not be automatically extrapolated to emergency surgery in critically ill patients!
- No strong evidence

- EN (rather than PN) should be preferred unless discontinuity or obstruction of gastrointestinal tract, or abdominal compartment syndrome is present
- In the case of an unrepaired anastomotic leak, internal or external fistula, or if distal feeding access is not achieved, **EN should be withheld** and PN may be commenced

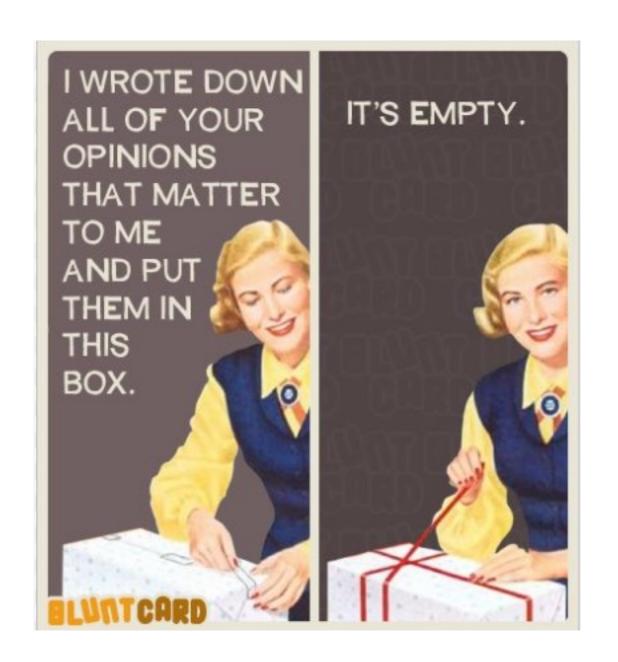
Acute mesenteric ischaemia

- Enteral feeding increases the splanchnic blood flow and oxygen demand in healthy voluteers¹ and critically ill patients²
- Early institution of full enteral nutrition in ICU patients may cause bowel ischaemia³

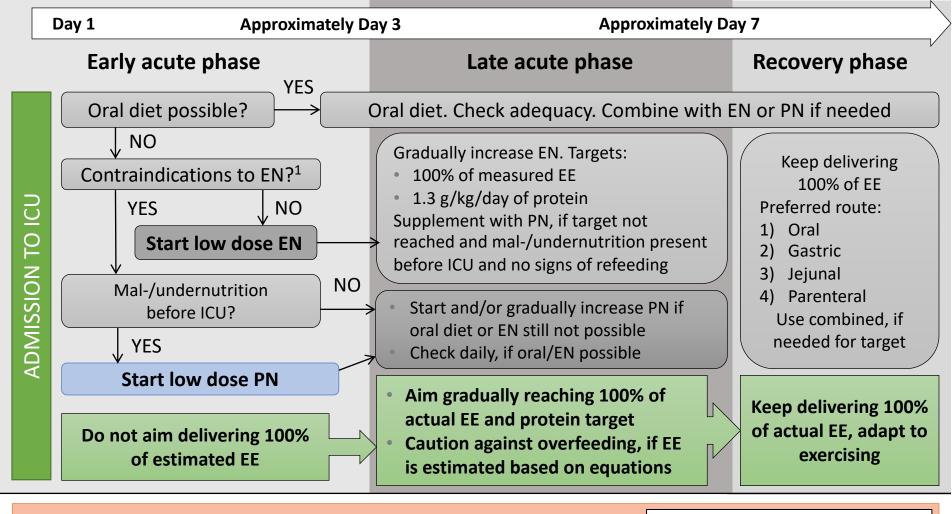
EN vs PN, normocaloric goals (20-25 kcal/kg/day), within 24 h after intubation

	Gastrointestinal complications								
	Vomiting*	406 (34%)	246 (24%)		1.89 (1.62 to 2.20)	<0.0001			
	Diarrhoea*	432 (36%)	393 (33%)		1·20 (1·05 to 1·37)	0.009			
	Bowel ischaemia*	19 (2%)	5 (<1%)		3·84 (1·43 to 10·3)	0.007			
Т	Acute colonic pseudo-obstruction*	11 (1%)	3 (<1%)		3·7 (1·03 to 13·2)	0.04	Т		

1) Takala J. Br J Anaesth. 1996; 77(1):50-8


2) Gatt M, et al. Crit Care Med. 2009; 37(1):171-6

) Reignier J, et al. (NUTRIREA-2). Lancet. 2018;391(10116):133-143


In summary - does early postoperative nutrition improves outcome?

- The effectiveness of early postoperative nutrition has not been convincingly proven, and the evidence is either lacking or weak
- Early nutrition alone is not a magic solution; instead, it is a complex set of measures that improve outcomes
- Not all surgical patients require the same level of nutritional support
- In some cases, there may be contraindications to early postoperative (enteral) nutrition
- Individualized care is essential

Tartu Ülikooli Kliinikum

- Full targets: measured EE or 20-25 kcal/kg/day, and 1.3 g/kg/day of protein
- For obese: use adjusted body weight
- If gastroparesis: 1) erythromycin, 2) +metoclopramide, 3) jejunal tube
- Consider non-nutritional calories, adapt nutritional calories accordingly
- Check prescribed vs. administered calories
- Assess gastrointestinal signs and symptoms daily
- Anticipate, monitor and manage refeeding
- Monitor overfeeding

¹ contraindications to EN: uncontrolled shock, uncontrolled hypoxemia, hypercapnia or acidosis, active upper GI bleeding, overt bowel ischaemia, abdominal compartment syndrome, highoutput fistula without distal feeding access, GRV >500ml/6h