

The impact of fluid balance on muscle mass assessment techniques in ICU patients: Muscle Ultrasound versus Bioelectrical Impedance Analysis

G. Šostakaitė, M. Jauniškytė, D. Budrys, K. Budrevičius, E. Šalčiūtė-Šimėnė, M. Svetikienė, T. Žvirblis, A. Klimašauskas, J. Šipylaitė

Vilnius University
Vilnius University Hospital Santaros Clinics

Muscles are an essential source of energy for a critically ill patient

- During the first week in intensive care, more than 10% loss of rectus femoris cross-sectional area was associated with:
 - \triangleright longer ICU length of stay (p = 0.038)
 - \triangleright hospital length of stay (p = 0.014)
 - \triangleright and mechanical ventilation time (p = 0.05)
- In patients with sepsis and acute respiratory distress syndrome, muscle wasting during the first 7 days of ICU was found to be a predictor for ICU-acquired weakness
- The prevalence of ICU-acquired weakness is 48%

Idea

How could we measure muscle wasting in criticaly ill patiens during treatment in ICU?

- ✓CT?
- ✓BMR?
- ✓ DEXA?
- √US?
- ✓BIA?
- ✓ Anthropometric measurements....?

Methodics

Patients admited to ICU (n=1077)

Purpose

- ✓ To compare PhA measured by BIA and muscle thickness measured by ultrasound in detecting and tracking muscle wasting in critical illness
- √ To assess the impact of fluid balance on these methods in ICU patients

Excluded patients per protocol (n=583):

ECS (n=45)

Limb amputations (n=11)

Language barrier (n=6)

No consent (n=62)

SOFA <3 (n=459)

Included into the study patients (n=494)

Excluded patients per protocol:

ICU stay <96 hrs. (n=393)

BaltAnestIC 2

11th International Baltic

September 28–30, 2023 101 included critically ill ional Museum patients

Intensive care

Patients characteristics

Parameter	Per-protocol sample							
	(N = 101)							
Age (years), mean (SD)	55.3 (14.81)							
BMI (kg/m²), mean (SD)	28.9 (6.24)							
Admission type, n (%)								
Medical	57 (56.4)							
Surgical	42 (41.6)							

Percentage change in muscle thickness does not correlate with the PA change, p=0.14

Which factors affecting both methods?

- ✓ PhA is independently influenced by: gender, age, BMI, SOFA score, NRS 2002 score, MV in the first week of treatment, albumin and CRP concentration, fluid balance
- ✓ <u>BMI and fluid balance</u> were found to have significant influence on the phase angle change on 5th and 7th days.
- ✓ NRS 2002 score, fluid balance of one week, CRP level and use of renal replacement therapy had significant influence on the relative change in muscle thickness

Fluid balance influence

- ✓ More positive fluid balance on the fifth and seventh day of ICU stay has a statistically significantly greater influence on PhA: p<0.001 and p=0.008
- ✓ Fluid balance did not have a statistically significant effect on the percentage change in muscle thickness, p=0.4 on day five and p=0.6 on day seventh

	ſ	[Min; Q1] [-11420; -320]	(Q1; Q2] (-320; 2495]				[Min; Q1] [-13640; -2130]		(Q1; Q2] (-2130; 1650]		(Q2; Q3] (1650; 4935]		(Q3; Max] 4935; 17256]	
Parameter	N	Mean (SD)	N	Mean (SD)	Parameter	N	Mean (SD)	N	Mean (SD)	N	Mean (SD)	N	Mean (SD)	P-value
PhA° change	26	0.39 (0.822)*,**	25	-0.07 (0.717)	PhA° change	26	0.26 (0.695) *	25	0.09 (0.966)	25	-0.49 (0.637) *	25	-0.3 (1.043)	0.008
					FFM % change	26	-5.36 (11.247)	25	-0.18 (14.587)	25	0.42 (9.938)	25	6.02 (14.01) *	0.019
FFM % change	26	-1.83 (6.275) *	25	1.95 (12.926)	Ü		*				, ,		,	
Biceps brachii % change	26	-4 (11.351)	25	-1.39 (14.291)	Biceps brachii % change	26	-5.5 (12.91)	25	-1.32 (12.233)	25	-6.65 (11.455)	25	-4.04 (13.432)	0.472
Rectus femoris % change	26	-5.43 (11.981)	25	-5.33 (19.214)	Rectus femoris % change	26	-8.33 (14.249)	25	-5.67 (22.841)	25	-0.43 (51.675)	25	-1.92 (26.214)	0.809
Vastus intermedius % change	26	-6.38 (18.711)	25	-4.1 (26.849)	Vastus intermedius % change	26	-8.87 (25.943)	25	-9.19 (33.131)	25	-4.35 (46.669)	25	-13.47 (29.818)	0.834
					All muscles % change	26	-3.13 (13.646)	25	-7.25 (11.824)	25	-2.88 (15.187)	25	-3.65 (12.913)	0.631
All muscles % change	26	-1.95 (8.888)	25	-5.19 (13.366)										

Conclusions

- ✓ Muscle thickness percental difference and PhA do not correlate in the assessment of muscle wasting in the ICU patient
- ✓ BIA measurements during ICU stay are significantly influenced by a positive fluid balance
- ✓ Muscle ultrasound is more appropriate for evaluation of muscle wasting in our patients during ICU treatment

